一级消防工程师考试消防安全技术实务章节考点建筑火灾
一级消防工程师考试消防安全技术实务章节考点建筑火灾
*一篇 消防基础知识
第二章 火灾
第三节 建筑火灾发展及蔓延的机理
一、建筑火灾蔓延的传热基础
热量传递有三种基本方式,即热传导、热对流和热辐射。
(一)热传导
热传导又称导热,属于接触传热,是连续介质就地传递热量而又没有各部分之间相对的宏观位移的一种传热方式。在固体内部,只能依靠导热的方式传热;在流体中,尽管也有导热现象发生,但通常被对流运动所掩盖。
(二)热对流
热对流又称对流,是指流体各部分之间发生相对位移,冷热流体相互掺混引起热量传递的方式。由于流体中存在温度差,所以也必然存在导热现象,但导热在整个传热中处于次要地位。工程上常把具有相对位移的流体与所接触的固体表面之间的热传递过程称为对流换热。
一般来说,建筑发生火灾过程中,通风孔洞面积越大,热对流的速度越快;通风孔洞所处位置越高,对流速度越快。热对流对初期火灾的发展起重要作用。
(三)热辐射
辐射是物体通过电磁波来传递能量的方式。热辐射是因热的原因而发出辐射能的现象。与导热和对流不同的是,热辐射在传递能量时不需要互相接触即可进行。*典型的例子是太阳向地球表面传递热量的过程。
二、建筑火灾烟气的流动过程
火灾发生在建筑内时,烟气流动的方向通常是火势蔓延的一个主要方向。500℃以上热烟所到之处,遇到的可燃物都有可能被引燃。
(一)烟气流动的路线及特点
建筑发生火灾时,烟气扩散蔓延主要呈水平流动和垂直流动。在建筑内部,烟气流动扩散一般有三条路线。*一条,也是*主要的一条:着火房间→走廊→楼梯间→上部各楼层→室外;第二条:着火房间→室外;第三条:着火房间→相邻上层房间→室外。
1.着火房间内的烟气流动
描述室内烟气流动特点和规律涉及几个重要的概念,包括烟气羽流、顶棚射流、烟气层沉降。
(1)烟气羽流。燃烧中,火源上方的火焰及燃烧生成的流动烟气通常称为火羽流。而火焰区上方为燃烧产物即烟气的羽流区,其流动完全由浮力效应控制,一般称其为烟气羽流或浮力羽流。由于浮力作用,烟气流会形成一个热烟气团,在浮力的作用下向上运动,在上升过程中卷吸周围新鲜空气与原有的烟气发生掺混。
(2)顶棚射流。当烟气羽流撞击到房间的顶棚后,沿顶棚水平运动,形成一个较薄的顶棚射流层,称为顶棚射流。由于它的作用,使安装在顶棚上的感烟探测器、感温探测器和洒水喷头产生响应,实现自动报警和喷淋灭火。
研究表明,假设顶棚距离可燃物的垂直高度为H,多数情况下顶棚射流层的厚度约为距离顶棚以下高度H的5%-12%,而顶棚射流层内*大温度和*大速度出现在距离顶棚以下高度H的1%处。顶棚射流的*大温度和*大速度值是估算火灾探测器和喷头热响应的重要基础。
(3)烟气层沉降。随着燃烧持续发展,新的烟气不断向上补充,室内烟气层的厚度逐渐增加。在这一阶段,上部烟气的温度逐渐升高、浓度逐渐增大,如果可燃物充足,且烟气不能充分地从上部排出,烟气层将会一直下降,直到浸没火源。
发生火灾时,应设法通过打开排烟口等方式,将烟气层限制在一定高度内。否则,着火房间烟气层下降到房间开口位置,如门、窗或其他缝隙时,烟气会通过这些开口蔓延扩散到建筑的其他地方。
2.走廊的烟气流动
3.竖井中的烟气流动
走廊中的烟气除了向其他房间蔓延外,还要向楼梯间、电梯间、竖井、通风管道等部位扩散,并迅速向上层流动。
烟气在竖井流动过程中,当坚井内部温度比外部高时,相应内部压力也会比外部高。此时,如果竖井的上部和下部都有开口,气体会向上流动,且在一定高度形成压力中性平面(室内外压力平衡的理论分界面,简称中性面)。对于开口截面积较大的建筑,相对于浮力所引起的压差而言,气体在竖井内流动的摩擦阻力可以忽略不计,由此可认为竖井内气体流动的驱动力仅为浮力。
(二)烟气流动的驱动力
1.烟囱效应
当建筑物内外的温度不同时,室内外空气的密度随之出现差别,这将引发浮力驱动的流动。竖井是发生这种现象的主要场合,在竖井中,由于浮力作用产生的气体运动十分显著,通常称这种现象为烟囱效应。在火灾过程中,烟囱效应是造成烟气向上蔓延的主要因素。
2.火风压
火风压是指建筑物内发生火灾时,在起火房间内,由于温度上升,气体迅速膨胀,对楼板和四壁形成的压力。火风压的影响主要在起火房间,如果火风压大于进风口的压力,则大量的烟火将通过外墙窗口,由室外向上蔓延;若火风压等于或小于进风口的压力,则烟火便全部从内部蔓延,当它进入楼梯间、电梯井、管道井、电缆井等竖向孔道以后,会大大加强烟囱效应。
烟囱效应和火风压不同,它能影响全楼。
3.外界风的作用
风的存在可在建筑物的周围产生压力分布,而这种压力分布能够影响建筑物内的烟气流动。建筑物外部的压力分布受到多种因素的影响,其中包括风的速度和方向、建筑物的高度和几何形状等。风的影响往往可以超过其他驱动烟气运动的力(自然和人工)。一般来说,风朝着建筑物吹过来会在建筑物的迎风侧产生较高精止压力,这可增强建筑物内的烟气向下风方向的流动。
三、建筑室内火灾发展的阶段
(一)初期增长阶段
初期增长阶段从出现明火起,此阶段燃烧面积较小,只局限于着火点处的可燃物燃烧,局部温度较高,室内各点的温度不平衡,其燃烧状况与敞开环境中的燃烧状况差不多。
(二)充分发展阶段
在建筑室内火灾持续燃烧一定时间后,燃烧范围不断扩大,温度升高,室内的可燃物在高温的作用下,不断分解释放出可燃气体,当房间内温度达到400~600℃时,室内绝大部分可燃物起火燃烧,这种在一限定空间内可燃物的表面全部卷入燃烧的瞬变状态,称为轰燃。
(三)衰减阶段
在火灾全面发展阶段的后期,随着室内可燃物数量的减少,火灾燃烧速度减慢,燃烧强度减弱,温度逐渐下降,当降到其*大值的**时,火灾则进入熄灭阶段。随后房间内温度下降显著,直到室内外温度达到平衡为止,火灾完全熄灭。
四、建筑室内火灾的特殊现象
(一)轰燃
当建筑室内火灾出现以下三种情况,即可判断发生了轰燃:一是顶棚附近的气体温度超过某一特定值(约600℃);二是地面的辐射热通量超过某一特定值(约20 kW/m2);三是火焰从通风开口喷出。影响轰燃发生的重要因素包括室内可燃物的数量、燃烧特性与布局、房间的大小与形状、开口的大小、位置与形状、室内装修装饰材料热惯性(即导热系数、密度和比热组合成的一个参数,决定热量吸收的多少)等。
(二)回燃
是指当室内通风不良、燃烧处于缺氧状态时,由于氧气的引入导致热烟气发生的爆炸性或*的燃烧现象。回燃通常发生在通风不良的室内火灾门窗打开或者被破坏的时候。
室内发生火灾时,处于气相的可燃泪合物浓度和室内的氧浓度是回燃发生的决定性因素。回燃的剧烈程度随室内可燃气相混合物浓度的增加而增大。室内火灾中可燃气相混合物浓度的大小,主要取决于室内可燃物的类型、火灾荷载密度、通风条件以及燃烧时间等。

更多培训课程,学习资讯,课程优惠等学校信息,请进入 广州消防工程师培训广州越秀区一消二消培训 网站详细了解,免费咨询电话:400-998-6158