联系方式

咨询热线:400-998-6158

点击此处免费预约试听课程»

常见问题
学习资讯
学习资讯

成人高考高起点《数学》知识点汇总

成人高考高起点《数学》知识点汇总:

1、取集合A和集合B的公共部分,记作A∩B。

2、取集合A和集合B的全部元素,记作A∪B。

简单逻辑

1、充分条件:如果A成立,那么B成立,“A推出B,B不能推出A”。

2、必要条件:如果B成立,那么A成立,“B推出A,A不能推出B”。

3、充要条件:如果A→B,又有A←B,“A推出B,B推出A”。

函数部分

1、值的不等式

值不等式的解法:

|ax+b|

(当a<0的时候,不等号要改变方向

|ax+b|>c相当于解不等式ax+b>c或ax+b<-c

2、常见函数的定义域

3、函数的单调性

*一种方法用取值法:任取2个数x1,x2,且x1

若f(x1)f(x2),则为减函数。

第二种方法用求导法(见后面)。

4、函数的奇偶性

令x=-x,若f(-x)=-f(x),则f(x)为奇函数;

若f(-x)=f(x),则f(x)为偶函数。

向量和直线

1、向量

设a=(x1,y1)b=(x2,y2),则:

加法运算:a+b=(x1,y1)+(x2,y2)=(x1+x2,y1+y2)

减法运算:a-b=(x1,y1)-(x2y2)=(x1-x2:y1-y2)

数乘运算:ka=k(x1,y1)=(kx1,ky1)

内积运算:a*b=(x1,y1)(x2,y2)= x1x2 +y1y2

垂直向量:a⊥b= x1x2 +y1y2=0

平行向量:a//b= x1y2 +x2y1=0

2、直线方程的几种形式(记住其中一种就可以)

点斜式:y-yo=k(x-x0),已知斜率k和某点坐标(xo,yo)

斜截式:y=kx+b,已知斜率k和在y轴的截距b

值不等式的解法:

|ax+b|

(当a<0的时候,不等号要改变方向)

|ax+b|>c,相当于解不等式ax+b>c或ax+b<-c

导数的应用

1、导数的几何意义

(1)几何意义:函数f(x)在点(x0,y0)处的导数值f'(x0),即为f(x)在点(x0,y0)处切线的斜率。

(2)常用导数公式:c为常数

2、函数单调性

f'(x)>0则f(x)在(a,b)内严格单调增加

f'(x)<0则f(x)在(a,b)内严格单调减少。

3、函数的极值、较大值、较小值

f'(x)=0的点----函数f(x)的驻点。设为x0

(1)若x< x0时,f'(x)>0;x> x0时,f'(x)<0,则f(x0)为f(x)的极大值点。

(2)若x

(3)如果f'(x)在x0的两侧的符号相同,那么f(x0)不是极值点。

(4)极值和端点的函数值中较大和较小的就是较大值和较小值。


学校联系方式

更多培训课程,学习资讯,课程优惠等学校信息,请进入 东莞高埗成人高考大专本科学历提升东莞中堂成考培训 网站详细了解,免费咨询电话:400-998-6158

相关课程