联系方式
常见问题
烟台管理类联考培训班费用
考研高等数学复习方法
函数与极限
微积分中研究的对象是函数。函数概念的实质是变量之间确定的对应关系。极限是微积分的理论基础,研究函数实质上是研究各种类型极限。无穷小就是极限为零的变量,极限方法的重要部分是无穷小分析,或说无穷小阶的估计与分析。我们研究的对象是连续函数或除若干点外是连续的函数。
微积分中研究的对象是函数。函数概念的实质是变量之间确定的对应关系。极限是微积分的理论基础,研究函数实质上是研究各种类型极限。无穷小就是极限为零的变量,极限方法的重要部分是无穷小分析,或说无穷小阶的估计与分析。我们研究的对象是连续函数或除若干点外是连续的函数。
导数与微分
一元函数的导数是一类特殊的函数极限,在几何上函数的导数即曲线的切线的斜率,在力学上路程函数的导数就是速度,导数有鲜明的力学意义和几何意义以及物理意义。函数的可微性是函数增量和自变量增量之间关系的另一种表达形式。函数微分是函数增量的线性主要部分。
一元函数的导数是一类特殊的函数极限,在几何上函数的导数即曲线的切线的斜率,在力学上路程函数的导数就是速度,导数有鲜明的力学意义和几何意义以及物理意义。函数的可微性是函数增量和自变量增量之间关系的另一种表达形式。函数微分是函数增量的线性主要部分。
微分中值定理与导数的应用
连续函数是我们研究的基本对象,函数的许多其他性质都和连续性有关。在理解有关定理的基础上可以利用导数判断函数单调性、凹凸性和求极值、拐点,并体现在作图上。微分学的另一个重要应用是求函数的最大值和最小值。
连续函数是我们研究的基本对象,函数的许多其他性质都和连续性有关。在理解有关定理的基础上可以利用导数判断函数单调性、凹凸性和求极值、拐点,并体现在作图上。微分学的另一个重要应用是求函数的最大值和最小值。
不定积分
积分学是微积分的主要部分之*。函数积分学包括不定积分和定积分两部分。在积分的计算中,分项积分法,分段积分法,换元积分法和分部积分法是最基本的方法。
积分学是微积分的主要部分之*。函数积分学包括不定积分和定积分两部分。在积分的计算中,分项积分法,分段积分法,换元积分法和分部积分法是最基本的方法。
定积分
定积分是微积分七大积分的基础,要理解微元法,理解以“以常代变”的这种思想。定积分的计算公式“牛顿-莱布尼兹”是我们微积分的核心,要会证明。
定积分是微积分七大积分的基础,要理解微元法,理解以“以常代变”的这种思想。定积分的计算公式“牛顿-莱布尼兹”是我们微积分的核心,要会证明。
定积分的应用
定积分的几何应用,是所有同学都需掌握的;物理应用数三的同学不需掌握。
定积分的几何应用,是所有同学都需掌握的;物理应用数三的同学不需掌握。
空间解析几何
本章主要理解向量之间的关系,会写平面、直线、二次曲面的方程,为后面重积分做准备。
本章主要理解向量之间的关系,会写平面、直线、二次曲面的方程,为后面重积分做准备。
多元函数微分法及其应用
在一元函数微分学的基础上,讨论多元函数的微分法及其应用,主要是二元函数的偏导数、全微分等概念,掌握计算不同函数的各种方法及应用中的会求条件或无条件极值。
在一元函数微分学的基础上,讨论多元函数的微分法及其应用,主要是二元函数的偏导数、全微分等概念,掌握计算不同函数的各种方法及应用中的会求条件或无条件极值。
重积分
在一元函数积分学中,定积分是某种确定形式的和的极限,这种和的极限的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念,本章主要介绍重积分(包括曲线曲面积分)的概念、计算方法以及它们的一些应用,重点是会计算。
在一元函数积分学中,定积分是某种确定形式的和的极限,这种和的极限的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念,本章主要介绍重积分(包括曲线曲面积分)的概念、计算方法以及它们的一些应用,重点是会计算。
适合人群
辅导内容
1
分模块、分阶段击破199科目中的数学、逻辑和写作的全部考试知识点。
2
讲练结合,系统全面的掌握数学知识点和考试题型。
3
把握逻辑的学科特点,学会迅速判断逻辑类型,提高做题的准确率和速度
4
精选习作范文,掌握写作技巧,*写作高分才能提升全科成绩
更多培训课程,学习资讯,课程优惠等学校信息,请进入 烟台海文考研烟台考研培训机构 网站详细了解,免费咨询电话:400-998-6158